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A largely catalysis based approach to optically active haouamine

A (�)-1 is presented, which provides the hexacyclic compound 25

previously used to construct this cytotoxic marine alkaloid.

Haouamine A (1) and B (2) isolated from the marine ascidian

Aplidium haouarianum collected off the coast of southern

Spain represent an unorthodox new class of alkaloids.1 They

consist of a congested indeno-tetrahydropyridine unit fused to

an 11-membered paracyclophane moiety which is so strained

that one of its phenol rings is forced out of planarity to adopt a

pseudo-boat conformation. The synthetic challenges posed by

this intricate topology are further increased by an anti-Bredt

double bond contained within the heptacyclic framework as

well as by the all-carbon quaternary chiral center at C-26. 1

exhibits significant and selective cytotoxicity against the

human colon carcinoma cell line HT-29 with an IC50 of

0.1 mg mL�1.1

Although several elegant approaches toward the haouamines

have been reported in the literature,2 it was only through a

cleverly designed alkyne/pyrone Diels–Alder cycloaddition

that Baran and coworkers were able to overcome the deterrent

ring strain of these targets;3–5 more conventional attempts to

forge the bent aza-cyclophane motif invariably failed.2,3 We

now disclose a largely catalysis based approach to Baran’s

hexacyclic key intermediate 25 in optically pure form, which

therefore represents a formal total synthesis of the naturally

occurring enantiomer (�)-1.
Our synthesis commenced with 3-methoxybenzaldehyde 3,

which was selectively iodinated by following a literature

route.6 Reaction of 4 with phosphonate 5
7 in the presence of

DBU gave product 6 in good yield and high diastereoselec-

tivity (Z : E 4 9 : 1, Scheme 1), which underwent an

asymmetric hydrogenation in the presence of the rhodium

catalyst 78 to set the directing stereocenter at C-17 exquisitely

well (97% 4 96% ee, 416 g scale). Slow addition of Dibal-H

to a solution of this compound in toluene at �78 1C afforded

the corresponding aldehyde which was subjected to a Wittig

olefination to give product 9 in good yield without loss of

optical purity (97% ee), provided that preformed Ph3PQCH2

was used as the reagent in toluene at 0 1C.9

Amine 10 released upon cleavage of the N-Cbz group in 9

underwent a smooth Petasis-type three-component coupling

reaction10 on exposure to formaldehyde and the functionalized

allylborane 19.11 The latter was best prepared from O-silylated

propargyl alcohol 16 via hydroboration with pinacolborane in

the presence of catalytic amounts of Cp2Zr(H)Cl,12 followed

Scheme 1 Reagents and conditions: (a) ref. 6; (b) 5, DBU, CH2Cl2,
86%; (c) complex 7 (1 mol%), H2 (20 atm), EtOAc, 97% (496% ee);
(d) Dibal-H, toluene, �78 1C, 90%; (e) Ph3PQCH2, toluene, 0 1C,
84%; (f) HBr–HOAc, CH2Cl2, 0 1C, 94%; (g) (i) [CH2O]n, borane 19,
toluene, 90 1C, 69% (ii) CbzCl, K2CO3, EtOAc–H2O, 94%; (h) (i)
second-generation Grubbs catalyst (5 mol%), toluene, 80 1C; (ii)
TBAF, THF, 89% (over both steps); (i) Dess–Martin periodinane,
NaHCO3, CH2Cl2, 85%; (j) Pd(OAc)2 (20 mol%), PPh3 (20 mol%),
Ag2CO3, MeCN, 65 1C, 75%; (k) CuI, 3-MeOC6H4MgBr, THF, 0 1C,
61–78%.
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by an iridium catalyzed double bond isomerization

(Scheme 2).11 Borane 19 is sufficiently nucleophilic to intercept

the imine primarily formed from 10 and formaldehyde in

toluene at 90 1C to give product 11 as a mixture of diaster-

eomers after reprotection with CbzCl under standard condi-

tions. Subsequent ring closing olefin metathesis (RCM) with

the aid of the second-generation Grubbs catalyst,13 followed

by oxidation furnished ketone 12 in excellent overall yield and

set the stage for an intramolecular Heck reaction14 to complete

the core section of haouamine A.

The Heck cyclization, however, required careful optimiza-

tion. Only in the presence of Ag2CO3 (Z 1 eq.), which turned

out to be the best amongst various silver additives investi-

gated, could this palladium catalyzed C–C-bond formation be

reliably effected.15 The integrity of the resulting tricyclic

product 13 was confirmed by X-ray structure analysis of the

derived endo-configured alcohol 14 which turned out to be a

nicely crystalline compound (Fig. 1).

The stereochemical course of the subsequent 1,4-addition of

3-methoxyphenylmagnesium bromide to enone 13 was deter-

mined by the adjacent stereocenter such that the required

cis-annulated ring system was exclusively formed. This reac-

tion was accomplished with the aid of purified CuI16 and

freshly prepared 3-MeOC6H4MgBr,17 whereas the use of other

copper sources and/or the corresponding lithium donor

suffered from lower yields, turned out to be less reproducible,

and was even plagued by competing 1,2- rather than 1,4-

addition to the hindered enone functionality of 13.

Next, the regioselective conversion of ketone 15 into the

corresponding enol triflate was investigated as the prelude to

the final act of the formal total synthesis of 1 (Scheme 3). In

line with previous observations reported by Garst and co-

workers,18 treatment of 15 with various bases (KHMDS,

NaH, Et3N etc.) and different triflate sources invariably led

to enolization toward nitrogen with formation of 20 as the

major isomer. This undesirable outcome, however, could be

easily rectified by replacement of the N-Cbz group by the

3-butynyl chain that is required for the envisaged intramole-

cular alkyne/pyrone Diels–Alder cycloaddition. The lone pair

on the now basic nitrogen atom in 22 is thought to destabilize

the enolate formed upon deprotonation at C-1; hence, equili-

bration upon warm-up to 0 1C afforded the desired enol

triflate 23 as the only observed product upon treatment with

2-pyridyl–NTf2.
19

As expected, the palladium catalyzed reaction of the known

stannane 273 exclusively engaged the C–I bond of 1,2-dihalo-

benzene 26 in cross coupling (Scheme 4).20,21 Product 28 was

then stannylated to provide 29 as a suitably functionalized

building block for the completion of the formal total synthesis

of 1.22

The Stille coupling of the sterically encumbered partners 23

and 29, however, was far from trivial (Scheme 3). Attempts to

induce coupling with catalytic [Pd(PPh3)4] alone engendered

rapid decomposition, and even the use of different copper

additives,2b,21,23 which are known to enhance the efficiency of

problematic Stille reactions, led to unacceptably low yields of

the desired compound. Therefore we were particularly pleased

to see that the combination of [Pd(PPh3)4] (5 mol%), copper

thiophene-2-carboxylate (CuTC)23a and the phosphinate salt

[Ph2PO2][NBu4]
24 in DMF at ambient temperature resulted in

a remarkably clean formation of product 24. The scope of this

protocol, which has also served our group well in other

complex natural product syntheses,25 is described in more

detail in the accompanying Communication.26

Scheme 2 Reagents and conditions: (a) pinacolborane, Cp2Zr(H)Cl
(0.5 mol%), CH2Cl2, 0 1C - RT, 70%; (b) complex 18 (1 mol%,
pre-activated with H2, 1 atm), THF, 80%.

Fig. 1 Molecular structure of 14 from single-crystal X-ray structure

determination.z Anisotropic displacement parameters are drawn at

50% probability and hydrogen atoms are omitted for clarity.

Scheme 3 Reagents and conditions: (a) cf. Text; (b) Pd/C, H2 (1 atm),
MeOH, 94%; (c) TIPSCRC(CH2)2I, KHCO3, MeCN, 90 1C (sealed
tube), 70%; (d) KHMDS, THF,�78 1C- 0 1C, then 2-pyridyl–NTf2,
67% (86% based on recovered starting material); (e) stannane 29,
Pd(PPh3)4 (5 mol%), CuTC (1.5 eq.), [Ph2PO2][NBu4] (1.5 eq.), DMF,
65% (86% based on recovered substrate); (f) TBAF, aq. THF, 68%.
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Fluoride induced cleavage of the silyl group in product 24

thus formed gave the terminal alkyne 25. As this compound

was identical in all respects to the key intermediate used by

Baran and co-workers in their approach to 1,3,4 a total

synthesis of this intricate alkaloid in optically active form

has been accomplished.27 Despite a somewhat higher step

count, our catalysis based route is similarly productive and

compares favorably in terms of its inherent flexibility.28
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